An Efficient and Stereoselective Wittig–Horner Synthesis of Acyclic α -Enones with Barium Hydroxide as Solid Catalyst

Carlos Alvarez-Ibarra,*a Selma Arias,^b Gabriel Bañón,^b María J. Fernández,^b Miguel Rodríguez,^b and Vicente Sinisterra^c

^a Departamento de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain

^b Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alcalá de Henares, Alcalá de Henares, Madrid, Spain

° Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Córdoba, Córdoba, Spain

Wittig–Horner reactions under interfacial solid–liquid conditions using activated barium hydroxide catalyst C-200 produce acyclic α -enones with high yields and selectivities.

The Wittig–Horner reaction is a versatile method for preparation of unsaturated compounds and its synthetic aspects have been widely studied¹. Recently, the process has been carried out using two-phase liquid–liquid² or solid–liquid conditions^{3—8} and better yields were obtained than those achieved under classical conditions. Nevertheless, undesired side reactions of starting materials (crotonization, Cannizzaro reaction, *etc.*) and products (*e.g.* double bond shifts) have often been observed.^{2,4–7}

We recently described a new microcrystalline solid basic catalyst, C-200 $[Ba(OH)_2 \cdot 0.8H_2O]^9$ and its catalytic activity in several organic reactions in solid–liquid media, *e.g.* aldol

Run	PhCHR ¹ CH=O R ¹	(EtO) ₂ POCH ₂ COR ² (3) R ²	Methoda	Reaction time	Product α-Enone	Yield(%) ^b
1	Me	Me	Α	10 min	(4 a)	96
2	Me	Me	В	3 h	(4a)	90
3	Me	But	Α	10 min	(4b)	98°
4	Me	But	В	3 h	(4b)	91°
5	Me	Ph	Α	10 min	(4 c)	84
6	Me	Ph	В	3 h	(4 c)	75
7	But	Me	Α	15 min	(5a)	96
8	But	Me	В	3 h	(5a)	94
9	But	But	Α	15 min	(5b)	96
10	But	But	В	3 h	(5b)	94
11	But	Ph	Α	15 min	(5c)	96
12	But	Ph	В	4 h	(5c)	95

 Table 1. Wittig-Horner reactions of 2-oxoalkanephosphonates with barium hydroxide C-200 and sodium hydride.

condensation,¹⁰ Michael addition,¹¹ Claisen–Schmidt condensation,¹² and Wittig–Horner reaction with triethyl phosphonoacetate and diethyl cyanomethanephosphonate.⁸ In order to get a general view of the catalytic activity of barium hydroxide C-200 in the heterogeneous Wittig–Horner reaction, we have now carried out the process using 2-oxoalkanephosphonates and aliphatic aldehydes with different degrees of steric hindrance (Scheme 1).

An improved synthesis of α , β -unsaturated ketones by the Wittig-Horner reaction under interfacial solid-liquid conditions using barium hydroxide C-200 as catalyst in 1,4-dioxane is reported[†] (Method A, Table 1). Although the selected α -enones can undergo isomerization easily,⁶ this undesirable side reaction is completely avoided under these conditions.

The synthetic method has been used to prepare the β -monosubstituted acyclic α -enones (4) and (5) with an asymmetric carbon at γ -position, useful model compounds for the study of diastereofacial selectivity in nucleophilic addition reactions.^{13,14} This is the first time α -enones (5) have been obtained and (4b) and (4c) have only been reported in connection with stereoselection studies.¹⁴

In Table 1 the results are compared with those obtained with the sodium hydride-1,2-dimethoxyethane system¹⁵ in homogeneous media (Method B). Under heterogeneous solid-liquid conditions with activated barium hydroxide C-200 (Method A) the process is an interfacial solid-liquid reaction controlled by the solid structure and small amounts of water must be added in order to increase the reaction rate as in the acrylate synthesis.⁸ Using Method A lower molar ratios of

Ph-CH-CHO R ¹	+	(EtO) ₂ P(O)CH ₂ COR ²
(1; $R^1 = Me$) (2; $R^1 = Bu^1$)		(3) a; R ² = Me b; R ² = Bu ^t
		c ; R ² = Ph
		base
		$\begin{array}{c} Ph - CH - CH = CH - CO - R^{2} \\ \mid Y \beta \alpha \\ R^{1} \end{array}$
		(4; R ¹ = Me) (5; R ¹ = Bu ^t)

Scheme 1

catalyst: aldehyde and shorter reaction times are necessary to obtain similar yields,3-7 and isolation of the products and experimental procedure are easier (anhydrous medium and inert atmosphere are avoided). The steric hindrance of the groups R^1 and R^2 does not affect the catalyst's effectiveness and no side reactions were observed.

However, a higher reaction temperature was needed for (\pm) -3,3-dimethyl-2-phenylbutanal (2) than for (\pm) -2-phenylpropanal (1) with the sodium hydride-1,2-dimethoxyethene system (Method B). Its lower reactivity can be explained by the greater steric hindrance of the Bu^t group in the α -position to the -CHO (Bu^t cf. Me). On the other hand, isomerization^{4,6} of the α -enones (4) was observed at reaction temperatures higher than 25 °C. This side reaction was not observed for (5) because of the presence of the bulkier Bu^t substituent at the γ -position which diminishes the stabilization of the β , γ -unsaturated system by steric inhibition of conjugation between the C_B-C_y double bond and the γ -Ph group.

The stereoselectivity of the reaction is the same in all cases. Only the (E, RS) isomer was obtained (vicinal coupling constant for olefinic protons ${}^{3}J_{\alpha\beta}$ i.5.4 Hz). Hence our method is efficient, highly stereoselective, and remarkably free of competing side reactions. The novel α -enones (5) are proposed as better model compounds for stereoselection studies

^aReaction conditions: Method A: C-200 in 1,4-dioxane, molar ratio catalyst: aldehyde 0.52, 70 °C; Method B: sodium hydride in 1,2-dimethoxyethane, molar ratio base: aldehyde 1, 25 °C for (4) and 40 °C for (5) [at 25 °C the yield of (5b) was only 67%]. ^bDetermined by gas chromatography ($\pm 2\%$) (except runs 3 and 4). ^c Deduced by ¹H n.m.r.

[†] The following procedure was typical. Barium hydroxide C-200 (activated at 140 °C for 1 h) [0.250 g, 1.30 mmol <>1.5 × 10⁻⁶ equiv. of strong basic sides, $pK_a > 11.7$], diethyl 2-oxoalkanephosphonate (3) (2.5 mmol) and 1,4-dioxane (6 ml) were mixed and stirred at 70 °C for 10 min. A mixture of aldehyde (1) or (2) (2.5 mmol) in 1,4-dioxane (2 ml) with water (0.05 ml) was added and the reaction mixture stirred at 70 °C (times given in Table 1). Aqueous HCl (10%) was then added to give acidic pH and the mixture was filtered. The organic layer was separated and the aqueous phase extracted with diethyl ether (3 × 30 ml). The combined organic layers were washed with water and saturated NaHCO₃, and dried (MgSO₄). The solvent was removed and the residue analysed by gas chromatography (BDS 10% on Chromosorb W-AW-DMCS) and ¹H n.m.r. spectroscopy. The product was purified by silica gel chromatography (light petroleum-diethyl ether, 97:3 v/v, as eluent) and characterized by i.r. and ¹H and ¹³C n.m.r. spectroscopy.

than (4), given their higher stability towards isomerization and their monoconformational character with respect to rotation around the C_{β} - C_{γ} bond.‡

Received, 13th April 1987; Com. 489

References

- 1 J. I. G. Cadogan, 'Organophosphorus Reagents in Organic Synthesis,' Academic Press, New York, 1979.
- C. Piechucki, Synthesis, 1974, 869.
- 3 F. Texier-Boullet and A. Foucaud, Synthesis, 1979, 884.
- 4 J. Villieras and M. Rambaud, Synthesis, 1983, 300.

‡ This character was deduced from analysis of ¹H and ¹³C n.m.r. spectra, in particular coupling constants ${}^{3}J_{\beta\alpha}$ and ${}^{4}J_{\alpha\gamma}$ in the ¹H n.m.r. spectra. (Unpublished results.)

- 5 J. Villieras, M. Rambaud, and B. Kirshleger, Phosphorus Sulfur, 1983, 14, 385.
- 6 G. Etemad-Moghadam and J. Seyden-Penne, Tetrahedron, 1984, 40, 5153.
- 7 F. Texier-Boullet, D. Villemin, M. Ricard, H. Moison, and A. Foucaud, Tetrahedron, 1985, 41, 1259.
- 8 J. V. Sinisterra, Z. Mouloungui, M. Delmas, and A. Gasset, *Synthesis*, 1985, 1097.
- 9 J. Barrios, J. M. Marinas, and J. V. Sinisterra, Bull. Soc. Chim. Belg., 1986, 95(2), 107.
- 10 A. García-Raso, J. V. Sinisterra, and J. M. Marinas, React. Kinet. Catal. Lett., 1981, 18(1-2), 33.
- 11 A. García-Raso, J. A. García-Raso, B. Campaner, R. Mestres, and J. V. Sinisterra, Synthesis, 1982, 1037. 12 J. V. Sinisterra, A. García-Raso, J. A. Cabello, and J. M.
- Marinas, Synthesis, 1984, 502.
- 13 C. H. Heathcock, S. Kiyooka, and T. A. Blumenkopf, J. Org. Chem., 1984, 49, 4214.
- 14 C. H. Heathcock and D. E. Uehling, J. Org. Chem., 1986, 51, 279.
- 15 G. Sturtz, Bull. Soc. Chim. Fr., 1964, 2349; 1967, 1097, 2477.